If so-called AI is basically just Large Language Models, how come predictive text on my phone is bollock-useless?
Like if I type "I have two appl.." for example, often it will suggest "apple" singular instead of plural. Just a small example, but it is really bad at predicting which variant of a word should come after the previous
I guess, the real question is: Could we be using (simplistic) LLMs on a phone for predictive text?
There's some LLMs that can be run offline and which maybe wouldn't use enormous amounts of battery. But I don't know how good the quality of those is...
You can run an LLM on a phone (tried it myself once, with llama.cpp), but even on the simplest model I could find it was doing maybe one word every few seconds while using up 100% of the CPU. The quality is terrible, and your battery wouldn't last an hour.
Not to mention the privacy issues, sending every word I ever write directly to a corp datacenter for any reason is one of the last things I'd ever want to do. Though as it always seems to be, most people would probably not care and just think "cool AI in phone? omg yes violate my privacy harder daddy Google"
The kind of local/offline LLMs that would work on your phone would not be very good quality. There's been amazing progress in quantization of LLMs to get them working on weaker GPUs with lower VRAM and CPUs, so maybe it'll occur, but I'm not an expert.
I also don't foresee them linking it up to a cloud-based LLM as that'd be a shit load of queries and extremely expensive.
OpenAI is probably already handling a significant amount of queries, I think for daily use the LLM should simply initialize a word map based on user history and then update it semi-occasionally, like once a week or two. Most people don’t drastically change their vocabulary in the course of a few weeks
I was so heartbroken when I found out that Microsoft purchased Swiftkey. It was my favorite. Is there any way to still use it without Microsoft involved? Lawdhammercy
No, the algorithms are not the same. Phones don't use transformer models for text prediction, they use Markov chain-based approaches. Also, retraining of transformer models for individualized completion would be too expensive, whereas it's basically free with Markov approaches. Where do you get these ideas?