During a remarkable congressional hearing, former American intelligence official David Grusch revealed that the US government conducted a "multi-decade" programme aimed at collecting and reverse-engineering crashed unidentified flying objects (UFOs).
Grusch, who was in charge of investigating unexp...
Just so you know, faster-than-light travel is not necessary to explore the stars. With enough constant acceleration (which seems to be achievable with the tech that these craft have demonstrated) you could go pretty much anywhere in the galaxy in your lifetime. The obvious downside is that the further you go, the more time-dilation becomes an issue for everyone else. For example, you may travel ~9 light years to Sirius in a matter of months from your perspective, but 10 years pass for everyone else. Still, if your goal is to explore, I find this to be quite a decent trade-off, and given that we are already making strides in life-extension that time may become a non-issue very quickly.
There's some wiggle-room there. A species that is naturally biologically immortal (or had biology that supported long periods of inactivity) might not find that spending hundreds of years to travel to a nearby star system was a deal-breaker for interstellar travel. They might be more motivated to execute such a project than we are since they could not just wait for their ancestors to die of old age as a way for younger members of the species to have control.
Also there is a possibility that a species might develop the technology to create a partly or fully artificial version of themselves that makes long interstellar trips less of an obstacle (synthetic biology, a combination of biology and machine, pure machine, etc).
Natural humans are certainly poorly suited for interstellar travel, but it may be that other kinds of life are more tolerant of it, or have redesigned some members of their species to handle it.
I don't want to be rude but this isn't correct as far as my understanding. I'm no expert, so I'm not confident in my ability to describe exactly how... But the phrase "you may travel ~9 light years to Sirius in a matter of months from your perspective, but 10 years pass for everyone else." I don't think that is correct exactly.
Again not trying to be rude and I am very happy to be corrected but I want to understand it.
The time dilation effect is pretty well known and comes naturally from the equations of the General Relativity Theory.
It's also been proven experimentally in particle accelerators (like CERN) when particles with at rest very short and well known half-lives (i.e. they natural break down into other particles some time after being created) lasted a lot longer (from our point of view) when travelling at near light speed.
However that effect only really starts getting noticeable without special equipment when the speed something is travelling at is getting near the speed of light (something like 90% or more of light speed).
This works correctly for the example of the previous poster because the distance to Sirius is given in light-years, which is literally the number of years that takes light (which by definition travels at the speed of light) to travel that distance.
(By the way, from the same equations from were you get time dilation comes that from the point of view light the trip is instantaneous)
So yeah, travelling a distance of that takes light 9 years to travel would be theoretically possible to do so fast (near light speed) that it would seem for those doing the trip to only take a few months (even though for those outside it would still seem to take longer than 9 years - as it takes light 9 years to get there so something at sublight speeds would take longer than the 9 years that takes for light).
Yeah, this is highly counter intutive so it "feels" wrong. If fact, the whole General Theory Of Relativity is highly counter intuitive. Yet, quite independently of what intuition (which is just a destilation of our personal experience) tells us, all that we've been able to observe so far in applicable situations is things happenning as predicted by that theory, not "intuition".
I'll put it another way then: any information you intended to send back after you arrive in Sirius would take ~9 years to arrive back home. Due to causality, this means that you cannot interact with Earth in any way for -- at minimum -- 9 years. However, from your perspective, you accelerated at let's say 10 Gs (speed increased by 98 meters per second every second), until you were half-way to Sirius, which will take about 5 months. Then you decelerated at -10 Gs to arrive with 0 speed, another 5 months. You perceive only 10 months of travel, but you are now 9 light-years from home.
The math is not the part which is difficult, and requires only a basic understanding of relativistic physics. The issue is maintaining 10 Gs of constant acceleration for 10 months.
Yeesh I'm just not good at that kind of stuff. Time dialation is what is making this hard for me to wrap my head around, but basically the big issue with this method of travel is you need infinite energy (which might be something these ships somehow do) and its like fast forwarding into the future, so even if you go back immediately it will be like you were gone ~18 years but only experience less than 2.
It is certainly an interesting thing to think about, but sounds depressing in practice. If this is the practical way that some beings have traveled here, I feel like we are missing a piece of the puzzle for long distance space travel. Maybe they have a way to do something about time dilation. Or maybe they just don't ever die...
The energy necessary to accelerate a bit more increases as the speed that object is travelling gets closer to the speed of light and indeed mathematically as the speed of the object gets closer to the actual speed of light the energy necessary to accelerate it gets closer to infinity.
If I remember it correctly it's because in the General Relativity Theory in the acceleration equation (not sure anymore if it was the one that relates Force to Acceleration or the Acceleration and Velocity one) the mass of the object isn't actually a constant amount but depends on its current velocity (it's as if the mass became larger with velocity). Just like for the whole time dilation stuff, this effect comes from the main equations and only really becomes noticeable closer to lightspeed (i.e. at relativistic speeds, called that because that's when you notice the effects of the Theory of Relativity, such as time dilation).
So the energy necessary to get to speeds below lightspeed yet close enough to have relatistic effects is not at all infinite, hence it is possible to reach relativistic speeds with the whole time dilation, redshift of light and other such effects, maybe even with current technology (I think we already have the tech to accelerate a ship to near lightspeed by having ground-based lasers pointed at a mirror on the back of it (so the light gets reflected - though that stuff has incredibly low acceleration as you're literally pushing that ship with photons plus ground-based lasers inside the Earth's athmosphere would was tons of energy due to the athmosphere).
In fact the very same experiments with subatomic particles that showed time dilation effects in their decay (which I mentioned in another comment) also showed it is possible to accelerate something to the point of having time dilation effects without infinite energy (if it happenned then it was possible to make it happen :))
Those effects only occur from the perspective of, for example, Earth. If you could exert force upon a space ship traveling away from you, it would require more energy to continue to accelerate it as its speed increases relative to you. But from the reference frame of the ship, this does not hold. Now, of course it will still require an insane amount of energy to maintain a constant acceleration, but from the spaceship's perspective energy expenditure is constant (assuming the mass of the ship isn't changing due to fuel loss).
If I remember it correctly from the point of view of the ship it looks like the propulsion becomes less effective, tough I confess my recolection of what I learned about the General Theory Of Relativity in my Physics degree almost 3 decades ago (which I never completed, by the way, so I'm an EE not a Physicist) breaks at around this point so I might be completelly off on this.
You don't need infinite energy, to be clear. Mathematically, you would need infinite energy to cross the light-speed barrier, which is why we don't believe that it is possible. You would simply need a LOT of energy. How much would depend on the mass of the craft. Actually the bigger problem may be negating the internal G forces, as humans cannot survive 10 Gs for long (or at all), but again it seems that these UAPs are capable of that.
Ah, I misread a wiki page. Not infinite, since we aren't traveling lightspeed, but approaching infinite as we approach lightspeed? Which is to say, not infinite but dang thats a lot of energy?
Again, I'm not great at understanding this stuff, so thanks for being patient
Sure, I don't mind explaining. No, we would not need near-infinite energy. We are quite capable of accelerating at 10 Gs in space right now, but eventually you will run out of fuel. So, let's say you add more fuel, well now you have more mass to accelerate so it costs more fuel per second. This becomes a balancing act which we can not overcome for long, and it's the reason space shuttles are so complicated and have multiple stages which break away to reduce mass.
This is primarily an issue because we use quite simple propulsion techniques, which rely on Newton's third law -- that forcing mass out from behind a ship will propel it in the opposite direction. It may be possible to accelerate using an Electro-Magnetic field, which would not involve burning fuel but instead some kind of depleting battery storage, or perhaps a nuclear reactor. In this case, accelerating at 10 Gs is simply a matter of matching the energy requirements to the mass of the ship, and for some perspective on the energy capabilities of nuclear fission, the Little Boy bomb reacted less than a gram of nuclear material to create the explosion in Hiroshima.
The uranium in the Hiroshima bomb was about 80 percent uranium 235. One metric ton of natural uranium typically contains only 7 kilograms of uranium 235. Of the 64 kilograms of uranium in the bomb, less than one kilogram underwent fission, and the entire energy of the explosion came from just over half a gram of matter that was converted to energy. That is about the weight of a butterfly.
So, obviously we aren't capable of converting that energy into a useful method of propulsion yet, but have some heart, because the pieces are all there -- we just need to put them together.