The problem has not yet fully manifested because renewables are a multiplier of fossil energy and fossil energy driven extraction of fossils and mineral resources, fossil driven agriculture and so on while we're yet only slightly past the cusp of net energy per capita production and about the cusp of net energy production. You already see the problems in accounting systems like SEEDS.
Early EVs began in the well developed industry era, which required significant coal use. You don't need rare earth magnets for windmills or water wheels, but it limits us to milling grain, pumping water and running blacksmith forges. Without cheap and abundant natural gas no cheap and abundant nitrate fertilizer. Without diesel and agricultural machines we're back to subsistence farming, but with the handicap of 8+ billions people already around, in a degraded ecosystem. Without bunker fuels no modern supply chains. Without diesel electric hybrid trucks and monster excavators no large scale mineral extraction and processing of progressively poor ores.
Photovoltaics is just great, but it has to power agriculture, mining, industry and everything, besides just itself (do look into why it cannot power even the supply chain of its own production, it is not just about ERoEI). Adding wind, a lesser scalable resource does not change anything. Molecular nanotechnology systems could probably do it, but need sustained high technology regime to be developed. We have basically abandoned tried building them in the time space of the last half century.
multiplier of fossil energy and fossil energy driven extraction of fossils
Yes cheap solar makes oil cheaper because it's not needed. Just like coal made wood cheaper. However Germany is at 59% renewable and increasing.
Biofuels allow you roughly Edo era Japan technology
Given that Edo era Japan did not have biofuels that's a self contradictory statement. Biofuels allow PV panel manufacturing which are a self sustainable energy production. That is the cost to produce a PV panel is less than than the energy it generates over its lifetime.
You don't need rare earth magnets for windmills or water wheels, but it limits us to milling grain, pumping water and running blacksmith forges.
You don't need rare earth magnets at all for generators or motors. They are used today to give efficiency improvements. We had generators and motors over 150 years ago without any rare earth magnets. Rare earth magnets date back to the 1970's. And the minerals needed to make them aren't scarce.
"The term 'rare-earth' is a misnomer because they are not actually scarce, although historically it took a long time to isolate these elements.[4][5]"
to summarize in a different way the arguments of the person you are debating with i would say just look around you, how much have we weaned from fossil fuels.
in 1993 the sum of nuclear and renewables in our global energy mix was 14%, 30 years later in 2023 it is 18.5%. our total energy usage is massively higher and fossil fuel use is massively higher over those 30 years.
Its too little too late scenario. Sure its technically possible we could replace FFs with renewables and nuclear but thats not where we are at yet or in the next 50 years at this pace. Now depending on what you think the depletion curve of FFs looks like will tell you if it will be possible or not. the data doesnt look good for a smooth transition. At best the scenario is a severe bottleneck unless we pull some unprecedented exponential changes in renewable and nuclear deployment.
You claimed a lack of rare earth magnets would send technology back to milling grain and pumping water. But they weren't invented until the 1970's. The Tesla model S doesn't even use them.
You claimed PV solar isn't self sustainable but we already know it's cost, which includes profit margins at every stage of manufacturing and transportation, is lower than the energy output over a panels lifetime. That means it is not only self sustainable but makes enough surplus energy for people to live off the jobs of manufacturing the PV panels.
No, you consistently fail to understand the whole mode of the argument. Rare earth magnets is a red herring which you brought up. Cost of PV is another such.
I gave up because what you said towards the conversation tail made me realize you're missing too much on your end to be worth my time and are unwilling to investigate on your own. If you "refuted" something, be my guest. I wish it was that easy with reality.
The cost of PV is not a red herring in that the consumer cost is the culmination of all manufacturing efforts required to make PV including profits for everyone. Because of this you can't claim there are hidden supply chain problems with PV panels without providing any evidence.
I already addressed your, "research it yourself" deflection.
I'm running informal sampling about the effectiveness of third party entry-level educational materials on a difficult topic, on a fringe platform. So far the finge platform is not showing a difference to mainstream ones, as potentially possible from audience self-filtering. While N is low the visible conversion factor so far is zero.
To directly address your comment: I am extremely aware of practice of solar PV in Germany, I live there and installed some 2kWp on my roof by myself. Your link has zero relevance to the argument whether current and near future renewable power is autopoietic and whether it also can also create, maintain and power the current global technological society. You need to look at primary energy consumption globally, because solar power infrastructure is merely installed in Germany, using mostly external resources.
I will not continue this thread further unless you can show me you're worth my time.