I wrote a (very long) blog post about those viral math problems and am looking for feedback, especially from people who are not convinced that the problem is ambiguous.
It's about a 30min read so thank you in advance if you really take the time to read it, but I think it's worth it if you joined such discussions in the past, but I'm probably biased because I wrote it :)
Honestly, I do disagree that the question is ambiguous. The lack of parenthetical separation is itself a choice that informs order of operations. If the answer was meant to be 9, then the 6/2 would be isolated in parenthesis.
It's covered in the blog, but this is likely due to a bias towards Strong Juxtaposition rules for parentheses rather than Weak. It's common for those who learned math into advanced algebra/ beginning Calc and beyond, since that's the usual method for higher math education. But it isn't "correct", it's one of two standard ways of doing it. The ambiguity in the question is intentional and pervasive.
I don't know what you want, man. The blog's goal is to describe the problem and why it comes about and your response is "Following my logic, there is no confusion!" when there clearly is confusion in the wider world here. The blog does a good job of narrowing down why there's confusion, you're response doesn't add anything or refute anything. It's just... you bragging? I'm not certain what your point is.
None of this has a point. We're talking over a shitpost rant about common use of math symbols. Even the conclusion boils down to it being a context dependent matter of preference. I'm just disagreeing that the original question as posed should be interpreted with weak juxtaposition.
I originally had the same reasoning but came to the opposite conclusion. Multiplication and division have the same precedence, so I read the operations from left to right unless noted otherwise with parentheses. Thus:
6/2=3
3(1+2)=9
For me to read the whole of 2(1+2) as the denominator in a fraction I would expect it to be isolated in parentheses: 6/(2(1+2)).
Reading the blog post, I understand the ambiguity now, but i’m still fascinated that we had the same criticism (no parentheses implies intent) but had opposite conclusions.
There's only 1 way - the "other way" was made up by people who don't remember The Distributive Law and/or Terms (more likely both), and very much goes against the standards.