No, he's right. "For any odd prime" is a not-unheard-of expression. It is usually to rule out 2 as a trivial case which may need to be handled separately.
It's not unheard of no, but if you have to rule out two for some reason it's because of some other arbitrary choice. In the first instance (haven't yet looked at the second and third one) it has to do with the fact that a sum of "two" was chosen arbitrary. You can come up with other things that requires you to exclude primes up to five.
Okay? Like I said, it's usually to rule out cases where 2 is a trivial edge case. It's common enough that "for any odd prime / let p be an odd prime" is a normal expression. That's all.
"even" just means divisible by two. So it's not unique at all. Two is the only prime that's even divisible by two and three is the only prime that's divisible by three. You just think two is a special prime because there is a word for "divisible by two" but the prime two isn't any more special or unique in any meaningful way than any other prime.
Of couse all the others are odd because otherwise they wouldn't be prime. All primes after three are also not divisible by three... "magic". The only difference is that there are is no word like "even" or "odd" for "divisible by three" or "not divisible by three".