Skip Navigation

A courts reporter wrote about a few trials. Then an AI decided he was actually the culprit.

www.niemanlab.org A courts reporter wrote about a few trials. Then an AI decided he was actually the culprit.

For one German reporter, the statistical underpinnings of a large language model meant his many bylines were wrongly warped into a lengthy rap sheet.

A courts reporter wrote about a few trials. Then an AI decided he was actually the culprit.

When German journalist Martin Bernklautyped his name and location into Microsoft’s Copilot to see how his articles would be picked up by the chatbot, the answers horrified him. Copilot’s results asserted that Bernklau was an escapee from a psychiatric institution, a convicted child abuser, and a conman preying on widowers. For years, Bernklau had served as a courts reporter and the AI chatbot had falsely blamed him for the crimes whose trials he had covered.

The accusations against Bernklau weren’t true, of course, and are examples of generative AI’s “hallucinations.” These are inaccurate or nonsensical responses to a prompt provided by the user, and they’re alarmingly common. Anyone attempting to use AI should always proceed with great caution, because information from such systems needs validation and verification by humans before it can be trusted.

But why did Copilot hallucinate these terrible and false accusations?

142

You're viewing part of a thread.

Show Context
142 comments
  • As with any statistics you have a confidence on how true something is based on your data. It’s just a matter of putting the threshold higher or lower.

    You just have to make so if that level of confidence is not reached it just default to a “I don’t know answer”. But, once again, this will make the chatbots seem very dumb as they will answer with lots of “I don’t know”.

    I think you misunderstand how LLM's work, it doesn't have a confidence, it's not like it looks at it's data and say "hmm, yes, most say Paris is the capital of France, so that's the answer". It "just" puts weight on the next token depending on it's internal statistics, and then one of those tokens are picked, and the process start anew.

    Teaching the model to say "I don't know" helps a bit, and was lauded as "The Solution" a year or two ago but turns out it didn't really help that much. Then you got Grounded approach, RAG, CoT, and so on, all with the goal to make the LLM more reliable. None of them solves the problem, because as the PhD said it's inherent in how LLM's work.

    And no, local llm's aren't better, they're actually much worse, and the big companies are throwing billions on trying to solve this. And no, it's not because "that makes the llm look dumb" that they haven't solved it.

    Early on I was looking into making a business of providing local AI to businesses, especially RAG. But no model I tried - even with the documents being part of the context - came close to reliable enough. They all hallucinated too much. I still check this out now and then just out of own interest, and while it's become a lot better it's still a big issue. Which is why you see it on the news again and again.

    This is the single biggest hurdle for the big companies to turn their AI's from a curiosity and something assisting a human into a full fledged autonomous / knowledge system they can sell to customers, you bet your dangleberries they try everything they can to solve this.

    And if you think you have the solution that every researcher and developer and machine learning engineer have missed, then please go prove it and collect some fat checks.

    • What do you think is "weight"?

      Is, simplifying, the amounts of data that says "The capital of France is Paris" it doesn't need to understand anything. It just has to stop the process if the statistics don't not provide enough to continue with confidence. If the data is all over the place and you have several "The capital of France is Berlin/Madrid/Milan", it's measurable compared to all data saying it is Paris. Not need for any kind of "understanding" of the meaning of the individual words, just measuring confidence on what next word should be.

      Back a couple of years when we played with small neural networks playing mario and you could see the internal process in real time, as there where not that many layers. It was evident how the process and the levels of confidence changed depending on how deep the training was. Here it is just orders of magnitude above. But nothing imposible to overcome as some people pretend to sell.

      Alternative ways of measure confidence is just run the same question several times and check if answers are equivalent.

      PhD is PhD in scaremongering about technology, so it's not an authority on anything here.

      IDK what did you do, but slm don't really hallucinate that much, if at all. Specially if they are trained with good datasets.

      As I said the solution is not in my hand, as it involves improving the efficiency or the amount of data. Efficiency has issues as current techniques seems to be unable to improve efficiency over a certain level. And amount of data is, obviously, costly.

      • What do you think is “weight”?

        You can call that confidence if you want, but it got very little to do with how "sure" the model is.

        It just has to stop the process if the statistics don’t not provide enough to continue with confidence. If the data is all over the place and you have several “The capital of France is Berlin/Madrid/Milan”, it’s measurable compared to all data saying it is Paris. Not need for any kind of “understanding” of the meaning of the individual words, just measuring confidence on what next word should be.

        Actually, it would be "The confidence of token Th is 0.95, the confidence of S is 0.32, the confidence of ... " and so on for each possible token, many llm's have around 16k-32k token vocabulary. Most will be at or near 0. So you pick Th, and then token "e" will probably be very high next, then a space token, then.. Anyway, the confidence of the word "Paris" won't be until far into the generation.

        Now there is some overseeing logic in a way, if you ask what the capitol of a non existent country is it'll say there's no such country, but is that because it understands it doesn't know, or the training data has enough examples of such that it has the statistical data for writing out such an answer?

        IDK what did you do, but slm don’t really hallucinate that much, if at all.

        I assume by SLM you mean smaller LLM's like for example mistral 7b and llama3.1 8b? Well those were the kind of models I did try for local RAG.

        Well, it was before llama3, but I remember trying mistral, mixtral, llama2 70b, command-r, phi, vicuna, yi, and a few others. They all made mistakes.

        I especially remember one case where a product manual had this text : "If the same or a newer version of <product> is already installed on the computer, then the <product> installation will be aborted, and the currently installed version will be maintained" and the question was "What happens if an older version of <product> is already installed?" and every local model answered that then that version will be kept and the installation will be aborted.

        When trying with OpenAI's latest model at that time, I think 4, it got it right. In general, about 1 in ~5-7 answers to RAG backed questions were wrong, depending on the model and type of question. I could usually reword the question to get the correct answer, but to do that you kinda already have to know the answer is wrong. Which defeats the whole point of it.

You've viewed 142 comments.