Skip Navigation

You're viewing a single thread.

37 comments
  • Is this how dark matter works? (That's the joke, right?)

    • Although we haven't observed dark matter on a microscopic scale, we have been measuring the effects of dark matter on a macro level for decades.

      • As far as I understand it, the way stars, planets, gas clouds and galaxies move wouldn't make sense with just the gravity of the visible objects. There needs to be so-far-undetectable (directly, at least) dark matter in the otherwise empty space? I don't really remember if it was understood to be a universally equal distribution, or if it is understood to be concentrated in blobs/clouds/noodles or whatever.

        I don't really have a lot at stake riding on it, while it's interesting physics and to an extent I care about it, I don't really care enough to either ridicule, push for solid answers "NOW", hunt down frauds, etc.. Some people really care about that, I don't really take it that seriously. I don't think life should be a rat race where you're either immediately useful and correct, or cut off and dead. The scientific consensus seems to be that there isn't really a good alternative to dark matter. Was it string theory that tried? I might be misremembering, but as far as I've heard, that's basically dismissed and disproven regardless of whether it had anything to do with dark matter.

        On a final note, is there any reason to expect that the giant deep Antarctic ice-telescope will be able to observe dark matter? Apparently it's supposed to be able to pick up on wavelenghts that we so far haven't had the chance to observe, iirc by triangulating rare flashes of light from neutrino collisions with particles in the extraordinarily clear ice.

        • The scientific consensus seems to be that there isn’t really a good alternative to dark matter. Was it string theory that tried?

          The alternative to dark matter is modified gravity/modified Newtonian dynamics. Neither of which have held up to scrutiny and have major flaws that would need to be worked out before being a legitimate competitor to dark matter. In every single permutation thought of today, these theories directly conflict with the reality we observe, while dark matter has been in happy agreement with new data.

          that’s basically dismissed and disproven regardless of whether it had anything to do with dark matter.

          String theory is not disproven and still remains the leading train of thought. It's just a very niche field and progress is hard/underfunded! But so far we've seen things like AdS/CFT correspondence and it's a more "elegant" solution than its competitors.

          is there any reason to expect that the giant deep Antarctic ice-telescope will be able to observe dark matter?

          Are you talking about the IceCube? If so, no, that's a neutrino telescope. Although, in general, the answer would also be no; dark matter does not interact with itself or with regular mass in any way other than through gravity. It's simply impossible to measure it directly - it must be done by measuring it's gravitational effect on other things.

          And because of that very property dark matter's smallest observable structures are galactic in scale, so it's also rather hopeless to try to observe them locally with current technology.

    • Basically yeah

You've viewed 37 comments.