There is far, far more lithium in the earth's crust than we will ever need for energy storage. We're only just now hurting for it because Tesla showed that electric cars are feasible as daily drivers which caused a huge surge in demand. We'll catch back up in a few more years. And the third world countries that let shitty mining practices take place are what give it a bad name right now. No one wants child slaves in the Congo to mine cobalt for us so we can drive to work. US mines are being built, new processes are being invented, and new battery chemistries that rely less on rare minerals are constantly being invented and implemented.
Also Sodium Ion (Na-Ion) batteries are currently in production and could be a viable alternative as the technology advances and production ramps up.
Right now Na-Ion batteries rival only the LFP type of Li-Ion battery (lithium-iron-phosphate) having a lower energy density than other Lithium chemistries. LFP is used commonly in utility power storage for its much greater safety and longevity, but it carries about 20% less power for size and weight compared to other lithium chemistries.
At present the favored battery type for EVs are Lithium types with the highest energy density. Some combine several advantages of the various Li-Ion chemistries having the highest energy density with somewhat greater safety and longevity.
Na-Ion is a new type of battery chemistry with lots of potential for improvement. They use more sustainable materials being cheaper and more abundant. If they could get the Na-Ion battery type within range of presently used Lithium technologies it would be a hugely better solution, a lot cheaper, a lot safer, and much easier on the environment.
The problem with sodium ion batteries, apart from lower density, is that they have a shorter lifespan. On the upside they're easier to recycle. IIRC there was some recent research that might fix the lifespan problem.
Is LMFP actually available in quantity? Wikipedia suggests not.
I realized that, I put an edit on there to not specify LMFP which has only been used in EVs in a limited fashion. I was confusing NMC which is actually the most common, oops. I changed it to a generic reference.
The problem with sodium ion batteries, apart from lower density, is that they have a shorter lifespan.
I've read differing reports on that. But yeah, cycle life is a big deal. In general it's not great for the common Li-Ion types. LFP has pretty amazing cycle life, about five times greater and rivals the NiMH king. In many cases it's well worth the additional size and weight, but for things sensitive to it like cars and handheld devices it's a problem.
In any case digging up fossil fuels is also pretty dirty, and has been known to pollute indigenous people's drinking water, steal their land, and on occasion pay for private militias and government troops to put down protests.
Obviously electric buses are preferable to electric cars. Public transport is worth investing in.
Also on batteries, iron-air is promising for grid storage, but not likely to be used for vehicles.
In any case digging up fossil fuels is also pretty dirty, and has been known to pollute indigenous people’s drinking water, steal their land, and on occasion pay for private militias and government troops to put down protests.
There isn't much in industry exempt from that kind of thing, but countries go to war over access to oil. Anything that reduces consumption is good for mankind.
hopefully.
still, evs are quite expensive. also the charging infrastrucutre would require a metric fuckton of copper, and that would raise copper prices to silly levels, and its already pricey.
@zoe@ramenbellic Level 1 charging is exactly that. Just a regular plug in to a regular socket. Level 1 charging overnight will fully charge many EVs (enough charge for a week of commuting). The average car sits idle for almost the entire day so slow charging is all most people need.
Exactly, I charge 120v at 8 amps just using a standard outlet in my garage and it generally provides enough charge for my commute and errands. I’ll usually top up at the free L2 at the grocery store while charging, and rely on DCFC for road trips.
Installing a L2 charger in my garage would be a tremendous waste of money and natural resources. The only reason I would consider it is that my utility company offers very cheap Time of Use (overnight) electricity rates (2¢/kWh, vs our normal 15¢/kWh) if we installed a separate, EV charging only meter for the garage.