I could be wrong but as I understand it. You know magnetism based on positive and negative poles, now they can read and write SPIN, which is another property of electrons (that are in everything, even things nonmagnetic). If it's true, and scales, we could use non-ferrous better materials to achieve what we do currently with ferrous materials.
These all indicate how a material reacts to a magnetic field. This article discusses "altermagnetism", which is somewhere between ferromagnetism and antiferromagnetism.
Unironically, magnetism is similar to charge, which is similar to mass.
You (probably) wouldn't ask "But why does an atom weigh anything?" or "why do opposite charges attract?" All these things are just intrinsic properties of matter: they just have them.
So the answer to questions regarding why anything has mass/charge/magnetic moment really come down to "they just do."
Now, if you want to talk about how and why magnets work at a macroscopic scale, we can have a long and interesting chat about long range ordering and phase transitions, but I'll leave that for now :)
There's a lot more to it than "they just do" we just don't know yet because there's actually a lot we don't understand about the fundamental properties of, well, fundamental particles.
See the higgs boson as for why matter has mass. We used to say "inertia is a property of matter" but some clever fucks figured out why and then proved it.