Skip Navigation
The reason why we never meet time travelers is because our civilization ends before the technology can come to fruition.
  • That's actually not quite accurate, although that is how it is commonly interpreted. The reason it is not accurate is because Bell's theorem simply doesn't show there is no hidden variables and indeed even Bell himself states very clearly what the theorem proves in the conclusion of his paper.

    In a theory in which parameters are added to quantum mechanics to determine the results of individual measurements, without changing the statistical predictions, there must be a mechanism whereby the setting of one measuring device can influence the reading of another instrument, however remote. Moreover, the signal involved must propagate instantaneously, so that such a theory could not be Lorentz invariant.[1]

    In other words, you can have hidden variables, but those hidden variables would not be Lorentz invariant. What is Lorentz invariance? Well, to be "invariant" basically means to be absolute, that is to say, unchanging based on reference frame. The term Lorentz here refers to Lorentz transformations under Minkowski space, i.e. the four-dimensional spacetime described by special relativity.

    This implies you can actually have hidden variables under one of two conditions:

    1. Those hidden variables are invariant under some other framework that is not special relativity, basically meaning the signals would have to travel faster than light and thus would contradict special relativity and you would need to replace it with some other framework.
    2. Those hidden variables are variant. That would mean they do indeed change based on reference frame. This would allow local hidden variable theories and thus even allow for current quantum mechanics to be interpreted as a statistical theory in a more classical sense as it even evades the PBR theorem.[2]

    The first view is unpopular because special relativity is the basis of quantum field theory, and thus contradicting it would contradict with one of our best theories of nature. There has been some fringe research into figuring out ways to reformulate special relativity to make it compatible with invariant hidden variables,[3] but given quantum mechanics has been around for over a century and nobody has figured this out, I wouldn't get your hopes up.

    The second view is unpopular because it can be shown to violate a more subtle intuition we all tend to have, but is taken for granted so much I'm not sure if there's even a name for it. The intuition is that not only should there be no mathematical contradictions within a single given reference frame so that an observer will never see the laws of physics break down, but that there should additionally be no contradictions when all possible reference frames are considered simultaneously.

    It is not physically possible to observe all reference frames simulatenously, and thus one can argue that such an assumption should be abandoned because it is metaphysical and not something you can ever observe in practice.[4] Note that inconsistency between all reference frames considered simulatenously does not mean observers will disagree over the facts, because if one observer asks another for information about a measurement result, they are still acquiring information about that result from their reference frame, just indirectly, and thus they would never run into a disagreement in practice.

    However, people still tend to find it too intuitive to abandon this notion of simultaneous consistency, so it remains unpopular and most physicists choose to just interpret quantum mechanics as if there are no hidden variables at all. #1 you can argue is enforced by the evidence, but #2 is more of a philosophical position, so ultimately the view that there are no hidden variables is not "proven" but proven if you accept certain philosophical assumptions.

    There is actually a second way to restore local hidden variables which I did not go into detail here which is superdeterminism. Superdeterminism basically argues that if you did just have a theory which describes how particles behave now but a more holistic theory that includes the entire initial state of the universe going back to the Big Bang and tracing out how all particles evolved to the state they are now, you can place restrictions on how that system would develop that would such that it would always reproduce the correlations we see even with hidden variables that is indeed Lorentz invariant.

    Although, the obvious problem is that it would never actually be possible to have such a theory, we cannot know the complete initial configuration of all particles in the universe, and so it's not obvious how you would derive the correlations between particles beforehand. You would instead have to just assume they "know" how to be correlated already, which makes them equivalent to nonlocal hidden variable theories, and thus it is not entirely clear how they could be made Lorentz invariant. Not sure if anyone's ever put forward a complete model in this framework either, same issue with nonlocal hidden variable theories.

  • [resource] Political Typology Quiz: Where do you fit in the political typology? Are you a Faith and Flag Conservative? Progressive Left? Or somewhere in between?
  • So… there are things that are either within the category of thought or not?

    Objects are in the category of thought but not in some spatial "realm" or "world" of thought. It is definitional, linguistic, not a statement about ontology.

    Is thought mutually exclusive to material? Is thought composed of material or the other way around? Or are they both the same?

    From an a priori standpoint there is no material, there is just reality. Our understanding of material reality comes from an a posteriori standpoint of investing it, learning about it, forming laws etc, and we do come to understand thought from an a posteriori lens as something that can be observed and implemented in other systems.

    Usually thought itself is not even considered as part of the so-called "hard problem" as that's categorized into the "easy problem."

    That is the standard definition of idealism, is it not? That existence is immaterial?

    They say existence is "mind" which includes both thought and experience which they both argue are products of the mind, and so if we start off with thought and experience as the foundations of philosophy then we're never able to leave the mind. That's how idealism works, the "thought" part of basically the "easy" problem and the "experience" part is what entails the "hard" problem since even idealists would concede that it is not difficult to conceive of constructing an intelligent machine that can reason, potentially even as good as humans can.

  • [resource] Political Typology Quiz: Where do you fit in the political typology? Are you a Faith and Flag Conservative? Progressive Left? Or somewhere in between?
  • They're just categorically different, there isn't an "inside" or an "outside" in the sense of spatial structure as that is something derived a posteriori as part of thought.

    I'm not sure what it would even mean to say reality is "thought". If I try my best to stop thinking about things does experiential reality just disappear? Not for me it doesn't. Maybe for you.

  • damn…
  • You shouldn't take it that seriously. MWI has a lot of zealots in the popular media who act like it's a proven fact, kind of like some String Theorists do, but it is actually rather dubious.

    MWI claims it is simpler because they are getting rid of the Born rule, so it has less assumptions, but the reason there is the Born rule in QM is because... well, it's needed to actually predict the right results. You can't just throw it out. It's also impossible to derive the Born rule without some sort of additional assumption, and there is no agreed upon way to do this.[1]

    This makes MWI actually more complicated than traditional quantum mechanics because they have to add different arbitrary assumptions and then add an additional layer of mathematics to derive the Born rule from it, rather than assuming it. These derivations also tend to be incredibly arbitrary because the assumptions you have to make to derive it are always chosen specifically for the purpose of deriving the Born rule and don't seem to make much sense otherwise, and thus are just as arbitrary as assuming the Born rule directly.[2] [3]

    If you prefer a video, the one below discusses various "multiverse" ideas including MWI and also discusses how it ultimately ends up being more mathematically complicated than other interpretations of QM.

    https://www.youtube.com/watch?v=QHa1vbwVaNU

    MWI also makes no sense for a separate reason. If you consider the electromagnetic field for example, how do we know it exists? We know it exists because we can see its effect on particles. If you drop some iron filings around a magnet, it conforms to the shape of a field, but ultimately what you are seeing is the iron filings and not the field itself, but the effects of the field. Now, imagine if someone claimed the iron filings don't even exist, only the field. You'd be a bit confused because, well, you only know the field exists because of its effects on the filings. You can't see the field, only the particles, so if you deny the particles, then you're just left in confusion.

    This is effectively what MWI does. We live in a world composed of spacetime containing particles, yet wave functions describe, well, waves made of nothing that exist in an abstract space known as Hilbert space. Schrodinger's derivation of his famous wave equation is based on observing the behavior of particles. MWI denies particles even exist and everything is just waves in Hilbert space made of nothing, which is very bizarre because then you would be effectively claiming the entire universe is composed of something entirely invisible. So how does that explain everything we see?

    [I]t does not account, per se, for the phenomenological reality that we actually observe. In order to describe the phenomena that we observe, other mathematical elements are needed besides ψ: the individual variables, like X and P, that we use to describe the world. The Many Worlds interpretation does not explain them clearly. It is not enough to know the ψ wave and Schrödinger’s equation in order to define and use quantum theory: we need to specify an algebra of observables, otherwise we cannot calculate anything and there is no relation with the phenomena of our experience. The role of this algebra of observables, which is extremely clear in other interpretations, is not at all clear in the Many Worlds interpretation.

    --- Carlo Rovelli, Helgoland: Making Sense of the Quantum Revolution

    The philosopher Tim Maudlin has a whole lecture you can watch below on this problem, pointing out how MWI makes no sense because nothing in the interpretation includes anything we can actually observe. It quite literally describes a whole universe without observables.

    https://www.youtube.com/watch?v=us7gbWWPUsA

    Not to rain on your parade or anything if you are just having fun, but there is a lot of misinformation on websites like YouTube painting MWI as more reasonable than it actually is, so I just want people to be aware.

  • [resource] Political Typology Quiz: Where do you fit in the political typology? Are you a Faith and Flag Conservative? Progressive Left? Or somewhere in between?
  • What is thought of as opposed to thought itself must necessarily exist prior to the thought in order for it to enter into thought and be what is thought of in the first place. I mean, it's just self-evident, is it not? If all thoughts cease, reality doesn't disappear. It's always there independent of whether or not thought is applied to it or not, whether or not there is an attempt to interpret it. It exists independent of any attempt made to formulate a subjective interpretation of it. That's all that is meant here by "objective," that reality is what it is entirely independent of what it is subjectively taken to be.

  • Electrons are easy
  • I think you are just trying to fight rather than actually have a discussion so I'm not really interested in going on, but I will say one last thing to clarify what I am saying for other people who might be reading.

    If you say observation = interaction then this inherently leads you to RQM which is like the definition of the interpretation. As I said at the beginning, I do support this interpretation, I think it's the most reasonable approach, but it should be made clear this is a rather fringe point of view and not supported by most academics. You can see in the paper below only 6% of academics support it. And you clearly don't seem to support it yourself as you seem to be pushing back against that rather than just agreeing with my statement it is the most intuitive way to think about things.

    https://arxiv.org/abs/1301.1069

    The plurality there support the Copenhagen view where observation really is given a special role.

    Without going the route of RQM then you end up with something that is just objectively false as the wave function would be incapable of spreading out since particles are always interacting with things, rendering quantum phenomena impossible.

    You can clarify instead by saying observation → interaction, that is to say, an observation implies an interaction, i.e. it inherently always entails an interaction but not interactions are observations, however, if you do this, you end up with the measurement problem. That is to say, you need to actually construct a theory to account for what kinds of interactions actually qualify as a measurement/observation. To quote John Bell...

    What exactly qualifies some physical systems to play the role of 'measurer'? Was the wavefunction of the world waiting to jump for thousands of millions of years until a single-celled living creature appeared? Or did it have to wait a little longer, for some better qualified system . . . with a PhD?

    https://philpapers.org/rec/BELAM

    Specifying a theory of measurement is known as an "objective collapse" model and they make different predictions than traditional quantum mechanics because depending on where you set the threshold for what kind of interaction qualifies as an "observation" changes how much the wave function can spread out before being collapsed again by such an "observation."

    There are several models of this like the Ghirardi–Rimini–Weber theory and the Diósi–Penrose model but these are ultimately more than just other interpretations of quantum mechanics but ultimately entirely new theories.

    It is not so simple just to say "observation is an interaction" and then pretend like the job is done, or else there would be no confusion in interpreting quantum mechanics at all. There is a lot more clarification that has to be made in order for it to make sense.

  • Electrons are easy
  • Saying that observations are a special kind of interaction does seem to be privileging humans, though? What is different from measurements/observations and any other interaction?

  • [resource] Political Typology Quiz: Where do you fit in the political typology? Are you a Faith and Flag Conservative? Progressive Left? Or somewhere in between?
  • There is no mind-body problem in the first place. All dualisms and idealisms are circular as they start from the premise that reality is subject-dependent then work backwards from that conclusion, but they never justify that premise. Even many materialists fall for it.

  • Electrons are easy
  • That's not what I'm saying. My point is just that observation = interaction has a lot of implications. Particles are always interacting, so if the wave function represented some absolute state of a system, then the statement would just be incorrect because the wave function would be incapable of ever "spreading out" as it is constantly interacting with a lot of things yet we don't "collapse" it in the mathematics until it interacts very specifically with us.

    The only way it can be made consistent is to then say that wave functions are not absolute things but instead describe something relative to a particular system, sort of like how in Galilean relativity you need to specify a coordinate system to describe certain properties like velocity of systems. You pick a referent object as the "center" of the coordinate system which you describe other systems from that reference frame.

    You would have to treat the wave function in a similar way, as something more coordinate than an actual entity. That would explain why it can differ between context frames (i.e. Wigner's friend), and would explain why you have to "collapse" it when you interact with something, as the context would've changed so you would need to "zero" it again kinda like tarring a scale.

    Often we leave out the referent object and it becomes implicit, such as if we say a car is traveling at 50 km/h, there is an implication here "relative to the earth." That is implied so it doesn't really need to be said, but people can become confused and think 50 km/h is really a property intrinsic to the car because we always leave it out.

    That's where a lot of confusion in QM comes from: we usually are concerned with what we will observe ourselves, what will actually show up on our measuring devices, so we implicitly use ourselves and our measuring devices as the referent object and by extension forget that we are describing properties of things relative to a particular coordinate system and not absolute.

  • Electrons are easy
  • If you suggest every observation is an interaction then you inherently are getting into the relational interpretation. Which I am not saying you're wrong to do so, I think it is the most intuitive way to think about things, but it is not a very popular viewpoint.

  • Electrons are easy
  • Physicists seem to love their confusing language. Why do they associate Bell's theorem with "local realism"? I get "local," that maps to Lorentz invariance. But what does "realism" even mean? That's a philosophical term, not a physical one, and I've seen at least 4 different ways it has been defined in the literature. Some papers use the philosophical meaning, belief in an observer-independent reality, some associate it with the outcome of experiments being predictable/predetermined, some associate it with particles having definite values at all times, and others argue that realism has to be broken up into different "kinds" of realism like "strong" realism and "weak" realism with different meanings.

    I saw a physicist recently who made a video complaining about how frustrated they are that everyone associates the term "dark matter" with matter that doesn't interact with the electromagnetic field (hence "dark"), when in reality dark matter just refers to a list of observations which particle theories are currently the leading explanation for but technically the term doesn't imply a particular class of theories and thus is not a claim that the observations are explained by matter that is "dark." They were like genuinely upset and had an hour long video about people keep misunderstanding the term "dark matter" is just a list of observation, but like, why call it dark matter then if that's not what it is?

    There really needs to be some sort of like organization that sets official names for terminology, kinda like how the French government has an official organization that defines what is considered real French so if there is any confusion in the language you at least have something to refer to. That way there can be some thought put into terminology used.

  • Electrons are easy
  • We can't see wave functions. It is a tool used to predict observations but itself cannot be observed, and cannot be an observable object as it exists in an abstract Hilbert space and not even in spacetime. It is only "space" in the sense of a state space, kind of like how if I have a radio with 4 knobs, I can describe the settings with a single point in a 4 dimensional space. That doesn't mean the radio actually is a 4 dimensional object existing in this state space, it only means that we can represent that way for convenience, and the dimensions here moreso represent degrees of freedom.

    If you believe everything is a wave function then you believe the whole universe is made out of things that cannot be observed. So how does that explain what we observe? Just leads to confusion. Confusion not caused by the mathematics but self-imposed. Nothing about the mathematics says you literally have to think everything is made out of waves. In fact, Heisenberg's original formulation of quantum mechanics made all the same predictions yet this was before the Schrodinger equation was even invented.

    People take the wave formulation way too literally and ultimately it just produces much of this confusion. They are misleadingly taught that you can think of things turning into waves by starting with the double-slit experiment, except it is horribly misleading because they think the interference pattern they're seeing is the wave function. Yet, (1) the wave function is associated with individual particles, not the interference pattern which is formed by thousands, millions of particles. There is nothing wave-like visible with just a single particle experiment. (2) Even the interference pattern formed by millions of particles does not contain the information of the wave function, only a projection of it, sort of like its "shadow" as the imaginary terms are lost when you apply the Born rule to it and square it. (3) They also like to depict a literal wave moving through two slits, but again there are imaginary components which don't map to anything physically real, and so the depiction is a lie as information has to be removed in order to actually display a wave on the screen.

    The moment you look at literally anything that isn't the double-slit experiment, the intuitive notion of imagining waves moving through space breaks down. Consider a quantum computer where the qubits are electrons with up or down spin representing 0 or 1. You can also represent the state of the quantum computer with a wave function, yet what does it even mean to imagine the computer's internal state is a wave when there is nothing moving at all and the state of the quantum computer doesn't even have position as one of its values? You can't point to that wave even existing anywhere, you get lost in confusion if you try.

    This cloud is described by a mathematical object called wave function. The Austrian physicist Erwin Schrödinger has written an equation describing its evolution in time. Quantum mechanics is often mistakenly identified with this equation. Schrödinger had hopes that the ‘wave’ could be used to explain the oddities of quantum theory: from those of the sea to electromagnetic ones, waves are something we understand well. Even today, some physicists try to understand quantum mechanics by thinking that reality is the Schrödinger wave. But Heisenberg and Dirac understood at once that this would not do.

    To view Schrödinger’s wave as something real is to give it too much weight – it doesn’t help us to understand the theory; on the contrary, it leads to greater confusion. Except for special cases, the Schrödinger wave is not in physical space, and this divests it of all its intuitive character. But the main reason why Schrödinger’s wave is a bad image of reality is the fact that, when a particle collides with something else, it is always at a point: it is never spread out in space like a wave. If we conceive an electron as a wave, we get in trouble explaining how this wave instantly concentrates to a point at each collision. Schrödinger’s wave is not a useful representation of reality: it is an aid to calculation which permits us to predict with some degree of precision where the electron will reappear. The reality of the electron is not a wave: it is how it manifests itself in interactions

    --- Carlo Rovelli, "Reality is Not What it Seems"

    It is more intuitive to not think of wave functions as entities at all. But people have this very specific mathematical notation so burned into their heads from the repeated uses of the double-slit experiment that it is very difficult to get it out of their heads. Not only did Heisenberg instead use matrix transformation rather than the Schrodinger equation to represent QM, but it is also possible to represent quantum mechanics in even a third mathematical formulation known as the ensemble in phase space formulation.

    The point here is that the Schrodinger equation is just one mathematical formalism in which there are multiple mathematically equivalent ways to formulate quantum mechanics, and so treating these wave functions wave really existing waves moving through a Hilbert space which you try to imagine as something like our own spacetime seems to be putting too much weight on a very specific formalism and ultimately is the source of a lot of the confusion. Describing the whole universe as thus a giant wave in Hilbert space evolving according to the Schrodinger equation is thus rather dubious, especially since these are entirely metaphysical constructs without any observable properties.

  • Multiple nations enact mysterious export controls on quantum computers
  • It's true that much of conventional asymmetric encryption could be broken by quantum computers, however NIST already has published some standards for asymetric encryption based on the lattice problem that cannot be broken by quantum computers. imo once it seems like quantum computers start to make a lot of progress there should probably be a regulatory initiative to push even private companies over to adopting the new algorithms.

  • What scientific discoveries greatly weakened religion and the case of God ?
  • The traditional notion of cause and effect is not something all philosophers even agree upon, I mean many materialist philosophers largely rejected the notion of simple cause-and-effect chains that go back to the "first cause" since the 1800s, and that idea is still pretty popular in some eastern countries.

    For example, in China they teach "dialectical materialist" philosophy part of required "common core" in universities for any degree, and that philosophical school sees cause and effect as in a sense dependent upon point of view, that an effect being described as a particular cause is just a way of looking at things, and the same relationship under a different point of view may in fact reverse what is considered the cause and the effect, viewing the effect as the cause and vice-versa. Other points of view may even ascribe entirely different things as the cause.

    It has a very holistic view of the material world so there really is no single cause to any effect, so what you choose to identify as the cause is more of a label placed by an individual based on causes that are relevant to them and not necessarily because those are truly the only causes. In a more holistic view of nature, Laplacian-style determinism doesn't even make sense because it implies nature is reducible down to separable causes which can all be isolated from the rest and their properties can then be fully accounted for, allowing one to predict the future with certainty.

    However, in a more holistic view of nature, it makes no sense to speak of the universe being reducible to separable causes as, again, what we label as causes are human constructs and the universe is not actually separable. In fact, the physicists Dmitry Blokhintsev had written a paper in response to a paper Albert Einstein wrote criticizing Einstein's distaste for quantum mechanics as based on his adherence to the notion of separability which stems from Newtonian and Kantian philosophy, something which dialectical materialists, which Blokhintsev self-identified as, had rejected on philosophical grounds.

    He wrote this paper many many years prior to the publication of Bell's theorem which showed that giving up on separability (and by extension absolute determinism) really is a necessity in quantum mechanics. Blokhintsev would then go on to write a whole book called The Philosophy of Quantum Mechanics where in it he argues that separability in nature is an illusion and under a more holistic picture absolute determinism makes no sense, again, purely from materialistic grounds.

    The point I'm making is ultimately just that a lot of the properties people try to ascribe to "materialists" or "naturalists" which then later try to show quantum mechanics is in contradiction with, they seem to forget that these are large umbrella philosophies with many different sects and there have been materialist philosophers criticizing absolute determinism as even being a meaningful concept since at least the 1800s.

  • What is a subject you would like to learn (more) about?
  • Use IBM's cloud quantum computers to learn a bit, you can indeed find YouTube videos that explain to you how to do the calculations and then you can just play around making algorithms on their systems and verifying that you can do the calculations correctly. With that knowledge alone you can then begin to learn how to step through a lot of the famous experiments that all purport to show the strangeness of quantum mechanics, like Bell's theorem, the "bomb tester" thought experiment, GHZ experiment, quantum teleportation, etc, as most of the famous ones can be implemented on a quantum computer and you can get an understanding of why they are interesting.

  • Assuming we don't have free will, why do we have the illusion that we do?
  • That would seem like more of a question of sociology and history, studying why certain cultures develop the ideas they do, and it probably would not be the same for every culture. Not really a question that I have the proper expertise on to answer.

  • answer = sum(n) / len(n)
  • I agree experience is incalculable but not because it is some special immaterial substance but because experience just is objective reality from a particular context frame. I can do all the calculations I want on a piece of paper describing the properties of fire, but the paper it's written on won't suddenly burst into flames. A description of an object will never converge into a real object, and by no means will descriptions of reality ever become reality itself. The notion that experience is incalculable is just uninteresting. Of course, we can say the same about the wave function. We use it as a tool to predict where we will see real particles. You also cannot compute the real particles from the wave function either because it's not a real entity but a description of relationships between observations (i.e. experiences) of real things.

  • InitialsDiceBearhttps://github.com/dicebear/dicebearhttps://creativecommons.org/publicdomain/zero/1.0/„Initials” (https://github.com/dicebear/dicebear) by „DiceBear”, licensed under „CC0 1.0” (https://creativecommons.org/publicdomain/zero/1.0/)BU
    bunchberry @lemmy.world
    Posts 0
    Comments 29