I agree somewhat, but I'd also say any codebase needs some level of "dogmatic" standard (ideally enforced via tooling). Otherwise you still end up with bad, messy code (I'd even say messier, as you don't even get consistency)
Define your terms before relying on platitudes. Mutability isn't cleaner if we want composition, particularly in the face of concurrency. Being idiomatic isn't good or bad, but patterned; not all patterns are universally desirable. The only one which stands up to scrutiny is efficiency, which leads to the cult of performance-at-all-costs if one is not thoughtful.
I'd agree with the first half, but not the second. Sometimes mutability allows for more concise code, although in most cases it's better to not mutate at all
The app working isn't good enough, it needs to be maintainable. From a professional perspective, unmaintainable code is useless code.
Code that mutates everywhere is generally harder to reason about and therefore harder to maintain, so just don't do it (unless there's literally no other practical way, but genuinely these are very rare cases)
Fair play, I guess we're probably just gonna disagree.
In my experience I'd say mutable code (larger than anything other than toy examples) always results in more time spent fixing bugs down the line, predominantly because it's objectively harder for humans to reason about multiple one to many relationships rather than multiple one to one relationships. I'd say because you need to think about all possible states of the set of mutable variables in your code in order to completely understand it (and I don't just mean understanding the intended purpose of the code, I mean understanding everything that code is capable of doing), that usually results in a more convoluted implementation than the pretty linear way you typically read functional code.
Longer code is practically always better if it's easier to understand than the shorter alternative. Software engineers aren't employed to play code golf, they're employed to write maintainable software. Though I'll say ultra high performance applications might be the exception here—but 99% of engineers aren't doing anything like that.
I'm always happy to be convinced otherwise, but I've never seen a convincing argument
Random example, imagine a variable that holds the time of the last time the user moved the mouse. Or in a game holding the current selected target of the player. Or the players gold amount. Or its level. Or health. Or current position.
Keeping state managed. The data for the function will be very predictable. This is especially important when it comes to multithreading. You can't have a race condition where two things update the same data when they never update it that way at all.
Rather than me coming up with an elaborate and contrived example, I suggest giving a language like Elixir a try. It tends to force you into thinking in terms of immutability. Bit of a learning curve if you're not used to it, but it just takes practice.
I'd say this example doesn't fully show off what immutable data can do--it tends to help as things scale up to much larger code--but here's how I might do it in JS.
<btn mobile big>
<btn desktop small solid my-class>
<btn medium>
Notice that JavaScript has a bit of the immutability idea built in here. The Array.flat() returns a new array with flattened elements. That means we can chain the call to Array.join( " " ). The classes array is never modified, and we could keep using it as it was. Unfortunately, JavaScript doesn't always do that; push() and pop() modify the array in place.
This particular example would show off its power a little more if there wasn't that initial btn class always there. Then you would end up with a leading space in your example, but handling it as an array this way avoids the problem.
I think the general idea would be to take the original const, and create a new const with the new location applied. Destroy the original when it's no longer needed or scoped. State maintained through parameters passed to the move function e.g. move(original const, new location) -> new const object instead of stateful members in the object like move(mutable, new location) -> updated mutable.