"Just to meet business-as-usual trends, 115% more copper must be mined in the next 30 years than has been mined historically until now," the study said.
"Just to meet business-as-usual trends, 115% more copper must be mined in the next 30 years than has been mined historically until now," the study said.
Give me an example where you think you got the upper hand on aluminum knowledge. LOL. Yeah it's harder to work with. But it's lighter and metallurgy has very little to do with the reasons why it's not used. I'll wait here while you go scrambling through Google's shitty results.
I don't have to, its electrical and thermal properties are trash compared to copper. There's a reason copper is used EVERYWHERE it matters by electrical engineers. I trust them :)
But you also should know that motors are controlled with high frequency voltages. That sort of RF actually travels down the material's skin rather than through the core. This Aluminum, being lighter, can also be made to have a larger surface area. You would get a kick if you knew what I do for work and fun.
By weight (mass) aluminum is about twice as good a conductor as copper. This is important when they are hanging high-voltage wires from towers
Not my words. You're wrong. The problem is 1) enamel coating research. 2) the strength of the material. Aluminum that is formable into wire is just darn soft and can easily fracture from bending. 3) I would say is the issue with not being able to solder to it. It has to be crimped connections which may fail due to corrosion. But all these are fixable problems. Aluminum is a conductor that is on par with copper for usability, and it is way more abundant.
I mean, you’re right, but we can’t use braided aluminum wire to make the coils in transformers and motors, so aluminums greater conductivity by mass is undercut by not being able to take advantage of that property because the engineering for motors and transformers dictates solid wire of a specific diameter.
Also an aluminum winding transformer or motor needs a bigger slug to deal with the more than double resistivity and at some point the benefits of aluminums cheapness and lightness disappear when you gotta have more heavy iron in the core, more heat and more winding failure due to vibration.
I don’t think that means we’re not gonna see ev motors with aluminum windings, just that they’ll be in shitty cheap vehicles for poor people.
Some of the stuff about that company says it’s doing aluminum windings and some of it says they’re doing no windings with flux barriers and air gaps. What’s up with that, different experimental technologies?
I’m skeptical of their claims about it being environmentally friendly since more stuff made out of aluminum means more aluminum being pulled out of the ground, but it’ll be interesting to see that develop.
E: their claim that it’s environmentally friendly because it’s got less rare earths makes sense now because they gotta use iron instead cause of the resistivity. I’m genuinely interested to see how much weight or volume savings they get and the efficiency for a given power output compared to a traditional copper and rare earth motor.
It really seems like a strange step backwards (not an insult, plenty of old technologies are perfectly valid and their manufacturing techniques need to still exist) to get cheaper components that sidestep the cost of shipping recycled copper around.
At some point the high cost of recycled materials has to be integrated into the supply chain somehow otherwise the benefit of having recycled them will never be realized. This technology seems like a scheme to increase consumption without dealing with the consequences of previous consumption.
Either way they'd have to rip out new ore, probably burning carbon to dig it up. Then smelt it, using more carbon, then transport the metal and turn it into an EV. Seems like developing more effecient forms of transportation would be a lot more green than selling everyone a new "green" electric vehicle.
Agreed. Fuck cars. But if you just gotta have that big monster truck, go with aluminum core motors. Less mass means more acceleration. There's less inertia.