The neat part is that if you add the numbers together and they're still too large to tell, you can do it again. In your example, you get 15. If you do it again, you get 6, which isn't the best example because 15 is pretty obvious, but it works.
Fuck you and take an upvote for coming here to state what I was going to when I immediately summed 5+1 to 6 and felt clever thinking "well I do know it's not prime and divisible by 3"
Shakes fist
I only know rules for 2 (even number), 3 (digits sum to 3), 4 (last two digits are divisible by 4), 5 (ends in 5 or 0), 6 (if it satisfies the rules for both 3 and 2), 9 (digits sum to 9), and 10 (ends in 0).
I don't know of one for 7, 8 or 13. 11 has a limited goofy one that involves seeing if the outer digits sum to the inner digits. 12 is divisible by both 3 and 4, so like 6, it has to satisfy both of those rules.
Another way to tell if 59271 is divisible by 7 is to divide it by 7. It will take about the same amount of time as the trick you're presenting, and then you'll already have the result.
If you have no interest in the result of the division, then you can also do the division in your head, without retaining the result, with about the same effort.
That's true for anyone needing expediency, this is basically a parlor trick not gonna lie. Knowing the quick paper math versions of stuff like this amounted to bar bets but hey, they work
Those math tricks work if you have time and means to set up the trick. I can see a total price of my gum and coffee at the gas station, know I want to spend $30 today, suggest to the attendant by saying "and $14.29 on pump 12"
The same logic applied to learning the divisibility rules. Math tricks that may or may not be useful ever but seriously fun to learn and... if you get the chance...
Which is why it feels kind of prime, imho. I don't know if other people get this, but I get a sense of which two-digit numbers are prime probably because of how often they show up in times tables and other maths operations.
3*17 isn't a common operation though and doesn't show up in tables like that, so people probably aren't generally familiar with it.
Does this also work the other way round, i.e. do all multiples of three have digits that sum to a multiple of 3?
All the ones I've checked so far do, but is it proven?
Indeed, an integer is divisible by 3 if and only if the sum of its digits is divisible by 3.
For proof, take the polynomial representation of an integer n = a_0 * 10^k + a_1 * 10^{k-1} + ... + a_k * 1. Note that 10 mod 3 = 1, which means that 10^i mod 3 = (10 mod 3)^i = 1. This makes all powers of 10 = 1 and you're left with n = a_0 + a_1 + ... + a_k. Thus, n is divisible by 3 iff a_0 + a_1 + ... + a_k is. Also note that iff answers your question then; all multiples of 3 have to, by definition, have digits whose sum is a multiple of 3