Skip Navigation

Emergent fields (theoretical physics)

Curious non-professional here.

Thought experiment that led me to the question: If we assume that at any given time there's an extreme level of EM and gravitational waves propagating through some point within a cosmic void (a seemingly homogeneous "vacuum"): do the transient emissions form any kind of emergent field?

I understand the ever-present zero-point energy but that should be in absence of all else. I'm contemplating an emergent field formed by EM/gravitational traffic. Obviously this field is only as present or strong as the transient fields passing through this point under consideration.

Thank you.

6
6 comments
  • In physics, emergence is used to describe a property, law, or phenomenon which occurs at macroscopic scales (in space or time) but not at microscopic scales, despite the fact that a macroscopic system can be viewed as a very large ensemble of microscopic systems.

    • "Solids are made of only three kinds of particles: electrons, protons, and neutrons. None of these are quasiparticles; instead a quasiparticle is an emergent phenomenon that occurs inside the solid. Therefore, while it is quite possible to have a single particle (electron, proton, or neutron) floating in space, a quasiparticle can only exist inside interacting many-particle systems such as solids." Quasiparticle Wiki

      I've also been studying Phonons on Wiki: " However, photons are fundamental particles that can be individually detected, whereas phonons, being quasiparticles, are an emergent phenomenon."

      This is the micro/quantum phenomena I'm trying to further understand and was wondering if any quasi-fields/particles have been discovered or predicted in space - I couldn't find any so far.

  • EM and gravity waves don't really interact like you suggest, but you could label gravitational lensing as a kind of emergent effect. High mass galactic or even stellar clusters can bend light (EM waves) from behind them, such that an observer could see objects not normally visible.

    If EM did interact directly with gravity as you'd like, we would know a lot more about dark matter.

    • I am firmly one of those who doesn't have high hopes for Dark Matter - or isotropic Dark Energy. For now I think MOND is developing a better representation of gravity and aspects of our cosmology. What I'm most curious about is what, if any, emergent/quasi-fields might form in space where it's dominated by EM fields; I added gravity as it can still be a factor, given it is a omnipresent field throughout our universe - even in cosmic voids.

You've viewed 6 comments.