Did you know it takes about 17,000 CPU instructions1 to print("Hello") in Python? And that it takes ~2 billion of them to import seaborn? Since writting this I have upgraded Cirron to substract its own overhead; it now measures print at ~9,000 instructions. ↩
Did you know it takes about 17,000 CPU instructions to print("Hello") in Python? And that it takes ~2 billion of them to import a module?
In fact, Python is still decent even if you do need speed. We compared Python and Rust for algorithm processing, and we got similar-ish numbers when using numba. Rust was certainly faster, but we would need to retrain a lot of our team, and numba was plenty fast.
Python is fast enough, and if it's not, there are libraries to get it there.
Same for me. I have used Python for most things since the late 1990s. Love Python. Have always hated the poor performance... but in my case mostly it was good enough. When it was not good enough, I wrote C code.
Python is good for problems where time to code is the limiting factor. It sucks for compute bound problems where time to execute is the limiting factor. Most problems in my world are time to code limited but some are not.
I get that... I'm not a developer, I'm a network engineer but I use a lot of python in my day to day operations. I always took python to be the "code for non-coders" which made it infinitely more approachable than some of the other languages.
I'm not running the F1 grand prix over here, I'm driving to get groceries, so what if it's not the fastest thing out there. Close enough is good enough for me. And in my experience that's what people are using python for, daily driving.
I doubt it's useful for performance evaluation, however, if you are writing a paper and want to compare your algorithm to an existing one, this can be handy
Eh, maybe? It's probably only useful for large jumps, and timing is also probably good enough for that as well. With small jumps, instruction execution order matters, so a bigger number could very well be faster if it improves pipelining.
It's certainly interesting and maybe useful sometimes, but it's probably limited to people working on Python itself, not regular users.
Just remember that an optimized C program will run about 100x faster then a similar Python program in a compute bound problem. So yes Python is slow but often good enough.