You need to properly feed, water and fertilize them. If you don't do this, your old hard drives will just waste away until they're just a few megabytes, not flourish into giant petabyte trees.
Mechanical hard drives are not 100% semiconductors like SSDs. You need improvements on materials science to cram more signal retention on paramagnetic materials.
As for SSDs, milking the current stock is part of it.
Also the improvements in computer speed from Moore’s law were from Denard Scaling, which says with transistors 2x smaller, you can run things 2x faster but produce 2x as much heat.
Heat dissipation has been the bottleneck for a long time now.
More’s law is at the most fundamental level a
observation about the exponential curve of technological progress.
It was originally about semiconductor transistors and that is what Moore was specifically looking at but the observed pattern does 100% apply to other things.
In modern language the way language is used and perceived determines its meaning and not its origins.
In modern language the way language is used and perceived determines its meaning and not its origins.
So we should start calling monitors computers, desktop towers modems (or CPUs (or hard drives)), wifi as internet, browsers as search engines and search engines as browsers. None of this is incorrect, according to the average person.
More’s law is at the most fundamental level a
observation about the exponential curve of technological progress.
No. Let me reiterate:
Moore's Law was an observation that semiconductor transistor density roughly doubles every ~2 years.
It is not about technological progress in general. That's just how the term gets incorrectly applied by a small subsect of people online who want to sound like they're being technical.
Moore's Law is what I described above. It is not "technology gets better".
In modern language the way language is used and perceived determines its meaning and not its origins.
This is technically correct but misleading in this context, given that it falsely implies that the original meaning (doubling transistor density every 2y) became obsolete. It did not. Please take context into account. Please.
Furthermore you're missing the point. The other comment is not just picking on words, but highlighting that people bring "it's Moore's Law" to babble inane predictions about the future. That's doubly true when people assume (i.e. make shit up) that "doubling every 2y" applies to other things, and/or that it's predictive in nature instead of just o9bservational. Cue to the OP.
Moore's law is about circuit density, not about storage, so the premise is invalidated in the first place.
There is research being done into 5D storage crystals, where a disc can theoretically hold up to 360TB of data, but don't hold your breath about them being available soon.
I always thought the holographic 3D discs were going to be a really cool medium in the infacy days of bluray and hd-dvd. I can't believe that's is been over a decade since the company behind it went bankrupt.
Not a stupid question at all. Here's the Wikipedia article for it. The significant part is this:
The 5-dimensional discs [have] tiny patterns printed on 3 layers within the discs. Depending on the angle they are viewed from, these patterns can look completely different. This may sound like science fiction, but it's basically a really fancy optical illusion. In this case, the 5 dimensions inside of the discs are the size and orientation in relation to the 3-dimensional position of the nanostructures. The concept of being 5-dimensional means that one disc has several different images depending on the angle that one views it from, and the magnification of the microscope used to view it. Basically, each disc has multiple layers of micro and macro level images.
Wavelength could add a dimension. For example, if you have an optical disc (2D) that can be read and written separately by red and blue lasers, that makes it 3D.
Moore's Law can be thought of as an observation about the exponential growth of technology power per $ over time. So yeah, not Moore's Law, but something like it that ordinary people can see evolving right in front of their eyes.
So a $40 Raspberry Pi today runs benchmarks 4.76 times faster than a multimillion dollar Cray supercomputer from 1978. Is that Moore's Law? No, but the bang/$ curve probably looks similar to it over those 30 years.
You can see a similar curve when you look at data transmission speed and volume per $ over the same time span.
And then for storage. Going from 5 1/4" floppy disks, or effing cassette drives, back on the earliest home computers. Or the round tapes we used to cart around when I started working in the 80's which had a capacity of around 64KB. To micro SD cards with multi-terabyte capacity today.
Same curve.
Does anybody care whether the storage is a tape, or a platter, or 8 platters, or circuitry? Not for this purpose.
The implication of, "That's not Moore's Law", is that the observation isn't valid. Which is BS. Everyone understands that that the true wonderment is how your Bang/$ goes up exponentially over time.
Even if you're technical you have to understand that this factor drives the applications.
Why aren't we all still walking around with Sony Walkmans? Because small, cheap hard drives enabled the iPod. Why aren't we all still walking around with iPods? Because cheap data volume and speed enabled streaming services.
While none of this involves counting transistors per inch on a chip, it's actually more important/interesting than Moore's Law. Because it speaks to how to the power of the technology available for everyday uses is exploding over time.
Moore’s law factored in cost, not just what was physically possible.
The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years.
About 5 years ago I pirated all the games ever normally published for my childhood gaming system and my friends different gaming system.
If I went to the past and told that to my younger self and that it all fits in a pinky finger nail sized medium, I wouldn't have belived me. It's just so far out there.
Yeah taken as a guideline and observation that computer speeds/storage/etc continue to improve, I think it’s fair. It may not always be double, but it is still significantly different than other physical processes which have “stagnated” by a similar metric (like top speed on an average vehicle or miles per gallon).
Hard drive density has stagnated. There haven't been any major technology breakthroughs since 750GB PMR drives came out in 2006. Most of the capacity improvements since then have come from minor materials improvements and stacking increasing amounts of platters per drive, which has reached its limit. The best drives we have, 24tb, have 10 platters, when drives in the 2000's only had 1-4 platters.
Meanwhile, semiconductors have been releasing new manufacturing processes every few years and haven't stopped.
Moore's Law somewhat held for hard drives up until 2010, but since then it has only been growing at a quarter of the rate.
Right now there are only 24TB HDDs, with 28TB enterprise options available with SMR. The big breakthrough maybe coming next year is HAMR, which would allow for 30tb drives. Meanwhile, 60TB 2.5"/e3.s SSDs are now pretty common in the enterprise space, with some niche 100TB ssds also available in that form factor.
I think if HAMR doesn't catch on fast enough, SSDs will start to outcompete HDDs on price per terabyte. We will likely see 16TB M.2 Ssds very soon. Street prices for m.2 drives are currently $45/TB compared to $14/TB for HDDs. Only a 3:1 advantage, or less than 4 years in Moore's Law terms.
Many enterprise customers have already switched over to SSDs after considering speed, density, and power, so if HDDs don't keep up on price, there won't be any reason to choose them over SSDs.
I've only looked at the consumer space and all I've noticed is that SSD prices were finally going down after stagnating for years, but then the manufacturers said that prices are too low and they intentionally slowed down production to increase prices, so prices are actually higher than they were a year ago.
I gave the subject a check. From Tom's Hardware, industry predictions are like:
Year
Capacity (in TB)
2022
1~22
2025
2~40
2028
6~60
2031
7~75
2034
8~90
2037
10~100
Or, doubling roughly each 4y. Based on that the state of art disks would 500TB roughly in 2040. Make it ~2050 for affordable external storage.
However note that this is extrapolation over a future estimation, and estimation itself is also an extrapolation over past trends. Might as well guess what I'm going to have for lunch exactly one year for now, it'll be as accurate as that.
To complicate things further currently you have competition between two main techs, spinning disks vs. solid state. SSD might be evolving on a different pace, and as your typical SSD has less capacity it might even push the average for customers back a bit (as they swap HDDs with SSDs with slightly lower capacity).
While not hard drives, at $dayjob we bought a new server out with 16 x 64TB nvme drives. We don't even need the speed of nvme for this machines roll. It was the density that was most appealing.
It feels crazy having a petabytes of storage (albeit with some lost to raid redundancy). Is this what it was like working in tech up till the mid 00s with significant jumps just turning up?
I'm more shocked how little I need extra space!
I'm rocking an ancient 1TB for backups. And my main is a measly 512GB SSD.
But I don't store movies anymore, because we always find what we want to see online, and I don't store games I don't actively use, because they are in my GOG or Steam libraries.
With 1 gigabit per second internet, it only takes a few minutes to download anyways.
Come to think of it, my phone has almost as much space for use, with the 512GB internal storage. 😋
Maybe I'm a fringe case IDK. But it's a long time since storage ceased to be a problem.
We can argue as much as we want about whether moore's law covers technological development in general or be pedantic like good old fundamental Christians and only read what the words say.
The bigger problem is that we have reached the era of what we could tentatively call "wal s'eroom". Thanks to enshittification (another one of those slippery words!) I predict that technological progress reverses from now on by 50% every 2 years.